Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Glasses of Lemonade (x)	10	2	8	5	4
Lemons Used (y)	40	8	32	20	16

For every glass of lemonade there were \qquad lemons used.
1)

Pieces of Chicken (x)	4	5	6	8	7
Price in dollars (\mathbf{y})	8	10	12	16	14

For each piece of chicken it costs \qquad dollars.
2)

Time in minute (x)	8	5	7	2	4
Gallons of Water Used (y)	328	205	287	82	164

Every minute \qquad gallons of water are used.
3)

Concrete Blocks (x)	4	8	2	6	9
weight in kilograms (y)	40	80	20	60	90

Every concrete block weighs \qquad kilograms.
4)

Phone Sold (x)	8	5	10	7	6
Money Earned (y)	320	200	400	280	240

Every phone sold earns \qquad dollars.
5)

Pounds of Beef Jerky (x)	9	2	5	7	10
Price in dollars (y)	126	28	70	98	140

For every pound of beef jerky it cost \qquad dollars.
6)

Cans of Paint (x)	5	4	7	3	9
Bird Houses Painted (y)	20	16	28	12	36

For every can of paint you could paint \qquad bird houses.
7)

Boxes of Candy (x)	4	5	2	9	6
Pieces of Candy (y)	64	80	32	144	96

For every box of candy you get \qquad pieces.
8)

Chocolate Bars (x)	3	5	6	10	4
Calories (y)	636	1,060	1,272	2,120	848

Every chocolate bar has \qquad calories.

Ex. \qquad $y=4 x$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$

Ex)

Glasses of Lemonade (x)	10	2	8	5	4
Lemons Used (y)	40	8	32	20	16

For every glass of lemonade there were \qquad lemons used.
1)

Pieces of Chicken (x)	4	5	6	8	7
Price in dollars (y)	8	10	12	16	14

For each piece of chicken it costs $\quad 2 \quad$ dollars.
2)

Time in minute (x)	8	5	7	2	4
Gallons of Water Used (y)	328	205	287	82	164

Every minute _ 41 gallons of water are used.
3)

Concrete Blocks (x)	4	8	2	6	9
weight in kilograms (y)	40	80	20	60	90

Every concrete block weighs \qquad 10 kilograms.
4)

Phone Sold (x)	8	5	10	7	6
Money Earned (y)	320	200	400	280	240

Every phone sold earns $\quad 40$ dollars.
5)

Pounds of Beef Jerky (x)	9	2	5	7	10
Price in dollars (y)	126	28	70	98	140

For every pound of beef jerky it cost \qquad 14 dollars.
6)

Cans of Paint (x)	5	4	7	3	9
Bird Houses Painted (y)	20	16	28	12	36

For every can of paint you could paint __ 4 bird houses.
7)

Boxes of Candy (x)	4	5	2	9	6
Pieces of Candy (y)	64	80	32	144	96

For every box of candy you get _16_ pieces.
8)

Chocolate Bars (x)	3	5	6	10	4
Calories (y)	636	1,060	1,272	2,120	848

Every chocolate bar has \qquad 212 calories.
For \qquad

For eray

Answers

Ex. \qquad $y=4 x$

1. \qquad $\mathrm{y}=2 \mathrm{x}$
2.

$$
y=41 x
$$

3. $\mathbf{y}=10 \mathrm{x}$
4.

$$
y=40 x
$$

5. $\mathbf{y}=14 \mathrm{x}$
6.

$$
y=4 x
$$

7. $\quad \mathbf{y}=16 x$

$$
\text { 8. } \quad \mathbf{y}=212 \mathrm{x}
$$

